
FACILE SYNTHESIS OF QUINONE EPOXIDES AND EPOXYCYCLOHEXENONES VIA RETRO DIELS-ALDER REACTION¹⁾

Akitami Ichihara^{*}, Makio Kobayashi, Kengo Oda and Sadao Sakamura Department of Agricultural Chemistry, Faculty of Agriculture Hokkaido University, Sapporo, Japan

(Received in Japan 2 August 1974; received in UK for publication 21 October 1974)

In previous papers, we reported the synthesis of phyllostine and an antitumor substance²⁾, epoxydon. In this communication, we would like to describe facile synthetic method of quinone epoxides and epoxycyclohexenones, closely related compounds of epoxydon and useful synthetic intermediates for some natural products³⁾, by retro Diels-Alder reaction of epoxy derivatives of quinone-dimethylfulvene adducts. Although it was noted that quinone epoxides were prepared from epoxides of cyclopentadiene-quinone adducts along this line, in practice it involved decomposition of products because of drastic conditions $(420 \, ^{\circ}C)$ during retro Diels-Alder reaction⁴⁾.

Diels-Alder reaction of quinones with dimethylfulvene in ethanol at 4 – 5° C for 2 days gave adducts, which, without isolation, were oxidized with hydrogen peroxide to yield epoxides 1-4. The reactions proceeded in a stereoselective manner to give predominantly <u>endo</u> compounds 3 and 4 except in the case of benzoquinone, which afforded <u>exo</u> and <u>endo</u> compounds 1 and 2 in a ratio of 1 : 1. The stereochemistries at ring juncture 4a-H and 8a-H in the epoxides 1-4 were determined easily by NMR spectra⁵⁾, in which the signals due to the protons 4a-H and 8a-H appeared at <u>ca</u>. § 3.40 (multiplet) in <u>endo</u> compounds 2, 3, 4, but at \int 2.70 (singlet) shielded by C-6 double bond in <u>exo</u> compound 1. The relative configuration of the epoxides 1-4 was confirmed as described later.

Reduction of the epoxides 1, 2 and 4 with sodium borohydride in tetrahydrofuran gave ketols 5-9 : though the reduction of 4 afforded regio- and stereoselectively 5 because of neighboring hydroxyl group effect, the same treatment of 2 and 1 yielded two epimeric isomers, 6, 7 and 8, 9, respectively. Assuming o-axial conformation⁶⁾ of β epoxy group in <u>endo</u> structure, a large coupling constant (9Hz) due to 8a-H in compound 7 indicates that the protons 8a-H and 1-H occupy <u>trans</u> diaxial positions. The result is compatible with eta -configuration of epoxy group in 2, together with consideration of unhindered β side attack of hydroperoxide and the stereochemistry of $\frac{7}{2}$ must be as shown and the other isomer as 6. In exo compounds 8 and 9, the coupling constant (9Hz) of 8a-H in 9 consists with diaxial relationship to 1-H. In the IR spectra under high dilute conditions, there was a strong hydrogen bond (3550 cm^{-1}) between hydroxyl group and C-9 double bond in 8 but none in 9. These data demonstrate that the stereochemistry of epoxy group in 1 must be α' and the stereostructure 9 was assigned. The other isomer must be depicted as 8. These structures were further supported by the fact that 6, 8 and 7, 9 were led to 14 and 15 by retro Diels-Alder reaction, respectively.

Retro Diels-Alder reaction under pyrolytic conditions without solvents

starting material	al*	method	<pre>reaction temp(^oC)</pre>	reaction solvent time(min)	reaction : time(min)	product	yield(%)
	- 4	ß	180	toluene	6	н = я о <u>т</u>	100
	2 R = H	£	160	toluene	o=(°≈		95
Č,	$\frac{3}{2}$ R = CH ₃	В	150	benzene	° °		100
o T	$\left \frac{1}{4} \mathbf{R}\right = CH_2 OH$	۷	165	diglyme	30 0 9	$12 R = CH_2 OH$	22**)
H	5 R = CH ₂ OH	۷	190	diglyme	Б З	$\left \begin{array}{c} R \\ R \end{array} \right $ $\left \begin{array}{c} 13 \\ 13 \end{array} \right $ $R = CH_2OH$	43**)
	6 R = H	щ	160	THF		<u>о</u>	100
I C I C I C I C I C I C I C I C I C I C	~~	· m	160	THF	set ∦	≌≀ ₹Q₹	100
	∞≀	£	180	THF	6 0	1 4	100
	∽ {	ß	180	THF	40	ŝţ	100
*							

Retro Diels-Aldar reaction of epoxy derivatives of quinone.-dimethylfulvene adducts

Table

 \star Satisfactory analytical data were obtained for all these compounds.

** The yields may be improved if we use method B.

,

failed because of decomposition of products. Successful conditions were method A and B and summerized in Table. Method A is refluxing the adduct in diglyme under nitrogen atmosphere and method B is heating the adduct in low boiling organic solvents such as benzene, toluene and THF etc. in a sealed tube. Since both methods were carried out under rather mild conditions at $150 \sim 190^{\circ}$ C in organic solvents, most of the reaction proceeded quantitatively. The resultant products 10-15 were characterized by IR, NMR, and MS spectra. The relative configuration of compounds 13 and 14 must be trans, since a long range coupling due to W-configration⁶⁾ was observed in these compounds. This synthetic method is not only useful for the general synthesis of quinone epoxides and epoxy-cyclohexenones but also made possible to synthesize senepoxyde^{3).} Further investigation on biological and antitumor activities of all synthetic compounds are in progress.

References and footnotes

- 1) This paper constitutes part V of "Synthetic studies of highly oxygenated cyclohexane derivatives". Part IV. A. Ichihara, R. Kimura, and S. Sakamura, Agr. Biol. Chem., submitted for publication.
- A. Ichihara, K. Oda, and S. Sakamura, <u>Agr. Biol. Chem.</u>, <u>38</u>, 163 (1974).
 idem, Tetrahedron Letters, 5105 (1972).
- 3) A. Ichihara, K. Oda, M. Kobayashi, and S. Sakamura, submitted for publication.
- 4) K. Alder, F. H. Flock, and H. Beumling, <u>Ber.</u>, <u>93</u>, 1896 (1960).
- 5) P. F. O'Brien and J. W. Gates, Jr. J. Org. Chem., <u>30</u>, 2593 (1965).
- 6) G. Read and V. M. Ruiz, J. Chem. Soc., (C) 1970, 1945.

4234